Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Front Immunol ; 12: 584660, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248924

RESUMO

The immune response of Anopheles mosquitoes to Plasmodium invasion has been extensively studied and shown to be mediated mainly by the nitric oxide synthase (NOS), dual oxidase (DUOX), phenoloxidase (PO), and antimicrobial peptides activity. Here, we studied the correlation between a heat shock insult, transcription of immune response genes, and subsequent susceptibility to Plasmodium berghei infection in Anopheles albimanus. We found that transcript levels of many immune genes were drastically affected by the thermal stress, either positively or negatively. Furthermore, the transcription of genes associated with modifications of nucleic acid methylation was affected, suggesting an increment in both DNA and RNA methylation. The heat shock increased PO and NOS activity in the hemolymph, as well as the transcription of several immune genes. As consequence, we observed that heat shock increased the resistance of mosquitoes to Plasmodium invasion. The data provided here could help the understanding of infection transmission under the ever more common heat waves.


Assuntos
Anopheles/imunologia , Anopheles/parasitologia , Resposta ao Choque Térmico/imunologia , Hemolinfa/parasitologia , Malária/imunologia , Plasmodium berghei/imunologia , Animais , Anopheles/genética , Feminino , Resposta ao Choque Térmico/genética , Imunidade/genética , Malária/parasitologia
2.
Mol Biochem Parasitol ; 238: 111298, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32621939

RESUMO

Endosymbiotic bacteria that obligately associate with entomopathogenic nematodes as a complex are a unique model system to study competition. These nematodes seek an insect host and provide entry for their endosymbionts. Through their natural products, the endosymbionts nurture their nematodes by eliminating secondary infection, providing nutrients through bioconversion of the insect cadaver, and facilitating reproduction. On one hand, they cooperatively colonize the insect host and neutralize other opportunistic biotic threats. On the other hand, inside the insect cadaver as a fighting pit, they fiercely compete for the fittest partnership that will grant them the reproductive dominance. Here, we review the protective and nurturing nature of endosymbiotic bacteria for their nematodes and how their selective preference shapes the superior nematode-endosymbiont pairs as we know today.


Assuntos
Bactérias/metabolismo , Fatores Biológicos/biossíntese , Insetos/parasitologia , Nematoides/microbiologia , Infecções por Nematoides/parasitologia , Simbiose/fisiologia , Animais , Bactérias/crescimento & desenvolvimento , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Proteínas de Helminto/metabolismo , Hemolinfa/microbiologia , Hemolinfa/parasitologia , Insetos/microbiologia , Nematoides/enzimologia , Nematoides/patogenicidade , Infecções por Nematoides/microbiologia , Fosfolipases A2/metabolismo
3.
Parasitology ; 147(11): 1229-1237, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32539882

RESUMO

This study provides a morphological and phylogenetic characterization of two novel species of the order Haplosporida (Haplosporidium carcini n. sp., and H. cranc n. sp.) infecting the common shore crab Carcinus maenas collected at one location in Swansea Bay, South Wales, UK. Both parasites were observed in the haemolymph, gills and hepatopancreas. The prevalence of clinical infections (i.e. parasites seen directly in fresh haemolymph preparations) was low, at ~1%, whereas subclinical levels, detected by polymerase chain reaction, were slightly higher at ~2%. Although no spores were found in any of the infected crabs examined histologically (n = 334), the morphology of monokaryotic and dikaryotic unicellular stages of the parasites enabled differentiation between the two new species. Phylogenetic analyses of the new species based on the small subunit (SSU) rDNA gene placed H. cranc in a clade of otherwise uncharacterized environmental sequences from marine samples, and H. carcini in a clade with other crustacean-associated lineages.


Assuntos
Braquiúros/parasitologia , Haplosporídios , Animais , Genes de Protozoários , Brânquias/parasitologia , Haplosporídios/classificação , Haplosporídios/genética , Haplosporídios/isolamento & purificação , Hemolinfa/parasitologia , Hepatopâncreas/parasitologia , Filogenia , Prevalência
4.
Exp Parasitol ; 212: 107886, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32209315

RESUMO

In aquaculture of the swimming crab Portunus trituberculatus, massive deaths have been recorded in the winter months due to infection with a novel emerging parasite, Mesanophrys sp. However, no information was available regarding the prevention and control of this particular parasite. Therefore, the present study was conducted to evaluate the anti-parasitic efficacy and toxicity of formalin against the Mesanophrys sp. In vitro results showed that the anti-parasitic efficacy of formalin improved with concentration increasing from 0.0 to 20.0 ppm within 24 h. In particular, when treated with formalin at 16.0, 15.0, 11.0, 10.0, 9.0, and 6.0 ppm for 0.5, 1, 2, 4, 6, 12, and 24 h respectively, the Mesanophrys sp. mortality rate reached 100%. To gain insights into the effects the formalin treatment had on the parasite, cell micro- and ultra-structure were investigated. It was determined that the cells contracted gradually and became rounded, intracellular vacuoles were observed at early time points (Ф≤4.83 ± 1.26 µm) and then disappeared. Cilia were shed and macronuclear chromatin became condensed and agglutinated. Small holes and bubbles appeared on surface of the parasites. In an in vivo trial, formalin was applied prior to Mesanophrys sp. artificial infection as prophylaxis to P. trituberculatus. The results showed that formalin prophylactic treatment effectively prevented P. trituberculatus from Mesanophrys sp. infection, thus remarkably reducing the mortality of crabs compared with the non-formalin-exposed and infected crabs. Furthermore, the normal behavior and survival of P. trituberculatus were not impacted by the prophylactic treatment.


Assuntos
Antiparasitários/farmacologia , Braquiúros/parasitologia , Desinfetantes/farmacologia , Formaldeído/farmacologia , Oligoimenóforos/efeitos dos fármacos , Análise de Variância , Animais , Aquicultura , Braquiúros/crescimento & desenvolvimento , Cromatina/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/ultraestrutura , DNA de Protozoário/efeitos dos fármacos , DNA de Protozoário/isolamento & purificação , Relação Dose-Resposta a Droga , Eletroforese em Gel de Ágar , Hemolinfa/parasitologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Interferência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Oligoimenóforos/genética , Oligoimenóforos/patogenicidade , Oligoimenóforos/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
5.
PLoS One ; 15(1): e0227832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945116

RESUMO

Here we characterized the development of the trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus using light and electron microscopy. This parasite has been previously reported to occur in the host hemolymph, which is rather typical for dixenous trypanosomatids transmitted to a plant or vertebrate with insect's saliva. In addition, C. marginatus has an unusual organization of the intestine, which makes it refractory to microbial infections: two impassable segments isolate the anterior midgut portion responsible for digestion and absorption from the posterior one containing symbiotic bacteria. Our results refuted the possibility of hemolymph infection, but revealed that the refractory nature of the host provokes very aggressive behavior of the parasite and makes its life cycle more complex, reminiscent of that in some dixenous trypanosomatids. In the pre-barrier midgut portion, the epimastigotes of B. raabei attach to the epithelium and multiply similarly to regular insect trypanosomatids. However, when facing the impassable constricted region, the parasites rampage and either fiercely break through the isolating segments or attack the intestinal epithelium in front of the barrier. The cells of the latter group pass to the basal lamina and accumulate there, causing degradation of the epitheliocytes and thus helping the epimastigotes of the former group to advance posteriorly. In the symbiont-containing post-barrier midgut segment, the parasites either attach to bacterial cells and produce cyst-like amastigotes (CLAs) or infect enterocytes. In the rectum, all epimastigotes attach either to the cuticular lining or to each other and form CLAs. We argue that in addition to the specialized life cycle B. raabei possesses functional cell enhancements important either for the successful passage through the intestinal barriers (enlarged rostrum and well-developed Golgi complex) or as food reserves (vacuoles in the posterior end).


Assuntos
Infecções por Euglenozoa/veterinária , Heterópteros/imunologia , Interações Hospedeiro-Parasita/fisiologia , Estágios do Ciclo de Vida/fisiologia , Trypanosomatina/crescimento & desenvolvimento , Animais , Resistência à Doença , Infecções por Euglenozoa/imunologia , Infecções por Euglenozoa/parasitologia , Hemolinfa/parasitologia , Heterópteros/parasitologia , Mucosa Intestinal/diagnóstico por imagem , Mucosa Intestinal/parasitologia , Mucosa Intestinal/ultraestrutura , Microscopia Eletrônica , Trypanosomatina/patogenicidade , Trypanosomatina/ultraestrutura
6.
Dev Comp Immunol ; 102: 103460, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31381930

RESUMO

This article reviews the past and present scientific reports regarding Bithynia spp. focusing on the biology, ecology and life cycle of Bithynia snails and their responses to Opisthorchis viverrini infection. Moreover, new data regarding comparative molecular genomics and proteomic approaches have recently revealed novel molecular components involved in the immune defence responses from Bithynia spp., providing additional perspectives for future studies. Studies on the specific interaction between Bithynia snails and their trematodes will contribute to further understanding the snail-parasite relationship with regards to epidemiology and control of Opisthorchiasis and broaden the scope on comparative immunology of gastropod snails.


Assuntos
Opisthorchis/fisiologia , Caramujos/imunologia , Caramujos/parasitologia , Animais , Genômica , Hemócitos/citologia , Hemócitos/parasitologia , Hemolinfa/citologia , Hemolinfa/metabolismo , Hemolinfa/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Opistorquíase/parasitologia , Opistorquíase/transmissão , Proteômica , Caramujos/genética , Caramujos/metabolismo
7.
Exp Parasitol ; 208: 107809, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31785242

RESUMO

The apicomplexan parasite Toxoplasma gondii can infect humans and cause toxoplasmosis. T. gondii has been highly prioritized among the foodborne parasites regarding its global impact on public health. Human infection can occur through multiple routes, including the ingestion of raw or undercooked food contaminated with T. gondii oocysts, such as fresh produce and bivalves. As filter-feeders, bivalves can accumulate and concentrate contaminants, including protozoan (oo)cysts. Although detection of T. gondii in different bivalves by molecular techniques (PCR and qPCR) has been achieved, routine application is currently limited by lack of sensitivity or equipment costs. Here, we describe the assessment of a loop-mediated isothermal amplification (LAMP)-based assay to detect T. gondii oocysts in spiked mussels. Detection limit was down to 5 oocysts/g in tissue and 5 oocyst/ml in hemolymph, and, under the experimental conditions tested, LAMP was found to provide a promising alternative to qPCR.


Assuntos
Bivalves/parasitologia , DNA de Protozoário/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/normas , Reação em Cadeia da Polimerase em Tempo Real/normas , Toxoplasma/genética , Animais , Eletroforese em Gel de Ágar , Doenças Transmitidas por Alimentos/parasitologia , Hemolinfa/parasitologia , Sensibilidade e Especificidade , Toxoplasma/isolamento & purificação , Toxoplasmose/parasitologia , Toxoplasmose/transmissão
8.
Parasitol Res ; 118(12): 3561-3564, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31728721

RESUMO

Most invertebrate species exhibit immunological responses that can inactivate and eliminate penetrating parasites. Such immune responses in particular involve the formation of potentially toxic reactive oxygen species (ROS). We explored the immune capabilities of the first-generation (F1) offspring of naturally infected freshwater snails, Lymnaea stagnalis, in response to infection by trematode cercariae under laboratory conditions. The rates of ROS formation and peroxidase activity in the hemolymph of the F1 offspring of L. stagnalis parents infected by an asexual stage of trematodes were significantly higher than in F1 offspring of uninfected parents. Compared to offspring from uninfected parents, the growth rate of F1 snails from infected parents was higher, but survival was lower. After infection of F1 snails by trematode cercariae of Echinoparyphium aconiatum under laboratory conditions, the rate of ROS formation and peroxidase activity in the hemolymph of F1 offspring of uninfected parents increased compared to control snails. This pattern persisted throughout the entire 3-week observation period. In contrast, the rate of ROS formation in the hemolymph of F1 snails from infected parents after experimental infection by E. aconiatum cercariae did not differ from controls, and peroxidase activity even decreased. Thus, trematode parthenitae infection of parents could alter the immune response of their offspring.


Assuntos
Echinostomatidae/fisiologia , Lymnaea/parasitologia , Estresse Oxidativo , Infecções por Trematódeos/veterinária , Animais , Echinostomatidae/genética , Echinostomatidae/isolamento & purificação , Água Doce/parasitologia , Hemolinfa/parasitologia , Lymnaea/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções por Trematódeos/metabolismo , Infecções por Trematódeos/parasitologia
9.
Parasit Vectors ; 12(1): 472, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604479

RESUMO

BACKGROUND: The parasitic dinoflagellates of the genus Hematodinium represent the causative agent of so-called bitter or pink crab disease in a broad range of shellfish taxa. Outbreaks of Hematodinium-associated disease can devastate local fishing and aquaculture efforts. The goal of our study was to examine the potential role of the common shore (green) crab Carcinus maenas as a reservoir for Hematodinium. Carcinus maenas is native to all shores of the UK and Ireland and the North East Atlantic but has been introduced to, and subsequently invaded waters of, the USA, South Africa and Australia. This species is notable for its capacity to harbour a range of micro- and macro-parasites, and therefore may act as a vector for disease transfer. METHODS: Over a 12-month period, we interrogated 1191 crabs across two distinct locations (intertidal pier, semi-closed dock) in Swansea Bay (Wales, UK) for the presence and severity of Hematodinium in the haemolymph, gills, hepatopancreas and surrounding waters (eDNA) using PCR-based methods, haemolymph preparations and histopathology. RESULTS: Overall, 13.6% were Hematodinium-positive via PCR and confirmed via tissue examination. Only a small difference was observed between locations with 14.4% and 12.8% infected crabs in the Dock and Pier, respectively. Binomial logistic regression models revealed seasonality (P < 0.002) and sex (P < 0.001) to be significant factors in Hematodinium detection with peak infection recorded in spring (March to May). Male crabs overall were more likely to be infected. Phylogenetic analyses of the partial ITS and 18S rRNA gene regions of Hematodinium amplified from crabs determined the causative agent to be the host generalist Hematodinium sp., which blights several valuable crustaceans in the UK alone, including edible crabs (Cancer pagurus) and langoustines (Nephrops norvegicus). CONCLUSIONS: Shore crabs were infected with the host generalist parasite Hematodinium sp. in each location tested, thereby enabling the parasite to persist in an environment shared with commercially important shellfish.


Assuntos
Alveolados/patogenicidade , Braquiúros/parasitologia , Reservatórios de Doenças/parasitologia , Alveolados/classificação , Alveolados/genética , Alveolados/fisiologia , Animais , Distribuição Binomial , DNA Espaçador Ribossômico/genética , Dinoflagelados/classificação , Dinoflagelados/genética , Dinoflagelados/patogenicidade , Dinoflagelados/fisiologia , Feminino , Brânquias/parasitologia , Hemolinfa/química , Hemolinfa/parasitologia , Modelos Logísticos , Masculino , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/análise , Estações do Ano , Água do Mar/parasitologia , País de Gales
10.
Proc Natl Acad Sci U S A ; 116(5): 1792-1801, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30647116

RESUMO

The parasitic mite Varroa destructor is the greatest single driver of the global honey bee health decline. Better understanding of the association of this parasite and its host is critical to developing sustainable management practices. Our work shows that this parasite is not consuming hemolymph, as has been the accepted view, but damages host bees by consuming fat body, a tissue roughly analogous to the mammalian liver. Both hemolymph and fat body in honey bees were marked with fluorescent biostains. The fluorescence profile in the guts of mites allowed to feed on these bees was very different from that of the hemolymph of the host bee but consistently matched the fluorescence profile unique to the fat body. Via transmission electron microscopy, we observed externally digested fat body tissue in the wounds of parasitized bees. Mites in their reproductive phase were then fed a diet composed of one or both tissues. Mites fed hemolymph showed fitness metrics no different from the starved control. Mites fed fat body survived longer and produced more eggs than those fed hemolymph, suggesting that fat body is integral to their diet when feeding on brood as well. Collectively, these findings strongly suggest that Varroa are exploiting the fat body as their primary source of sustenance: a tissue integral to proper immune function, pesticide detoxification, overwinter survival, and several other essential processes in healthy bees. These findings underscore a need to revisit our understanding of this parasite and its impacts, both direct and indirect, on honey bee health.


Assuntos
Abelhas/parasitologia , Corpo Adiposo/parasitologia , Hemolinfa/parasitologia , Varroidae/patogenicidade , Animais , Dieta , Interações Hospedeiro-Parasita/fisiologia , Reprodução/fisiologia
11.
Dev Comp Immunol ; 92: 238-252, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529491

RESUMO

Invertebrate immune response may be primed by a current infection in a sustained manner, leading to the failure of a secondary infection with the same pathogen. The present study focuses on the Schistosomiasis vector snail Biomphalaria glabrata, in which a specific genotype-dependent immunological memory was demonstrated as a shift from a cellular to a humoral immune response. Herein, we investigate the complex molecular bases associated with this genotype-dependant immunological memory response. We demonstrate that Biomphalaria regulates a polymorphic set of immune recognition molecules and immune effector repertoires to respond to different strains of Schistosoma parasites. These results suggest a combinatorial usage of pathogen recognition receptors (PRRs) that distinguish different strains of parasites during the acquisition of immunological memory. Immunizations also show that snails become resistant after exposure to parasite extracts. Hemolymph transfer and a label-free proteomic analysis proved that circulating hemolymph compounds can be produced and released to more efficiently kill the newly encountered parasite of the same genetic lineage.


Assuntos
Biomphalaria/imunologia , Genótipo , Hemolinfa/parasitologia , Schistosoma/fisiologia , Esquistossomose/imunologia , Animais , Antígenos de Helmintos/imunologia , Vetores de Doenças , Interações Hospedeiro-Parasita , Imunidade Humoral , Memória Imunológica , Proteômica , Receptores de Reconhecimento de Padrão/metabolismo , Especificidade da Espécie
12.
Int J Parasitol ; 48(14): 1073-1078, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30367865

RESUMO

Malaria parasite oocysts located on the mosquito midgut generate sporozoites by a process called sporogony. Plasmodium berghei parasites express six LCCL lectin domain adhesive-like proteins (LAPs), which operate as a complex and share a localisation in the crystalloid - an organelle found in the ookinete and young oocyst. Depletion of LAPs prevents crystalloid formation, increases oocyst growth, and blocks sporogony. Here, we describe a LAP4 mutant that has abnormal crystalloid biogenesis and produces oocysts that display reduced growth and premature sporogony. These findings provide evidence for a role of the LAP complex in regulating oocyst cell division via the crystalloid.


Assuntos
Anopheles/parasitologia , Soluções Cristaloides/metabolismo , Oocistos/fisiologia , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Divisão Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Hemolinfa/parasitologia , Proteínas de Protozoários/genética , Esporos de Protozoários/fisiologia
13.
Microb Pathog ; 124: 337-345, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30172903

RESUMO

The Nipa palm hispid, Octodonta nipae (Maulik) is an important invasive pest of palm trees particularly in Southern China. How this beetle interacts with invading pathogens via its immune system remains to be dissected. Steinernema carpocapsae is a pathogenic nematode that attacks a number of insects of economic importance. The present study systematically investigates the cellular immune responses of O. nipae against S. carpocapsae infection using combined immunological, biochemical and transcriptomics approaches. Our data reveal that S. carpocapsae efficiently resists being encapsulated and melanized within the host's hemolymph and most of the nematodes were observed moving freely in the hemolymph even at 24 h post incubation. Consistently, isolated cuticles from the parasite also withstand encapsulation by the O. nipae hemocytes at all-time points. However, significant encapsulation and melanization of the isolated cuticles were recorded following heat treatment of the cuticles. The host's phenoloxidase activity was found to be slightly suppressed due to S. carpocapsae infection. Furthermore, the expression levels of some antimicrobial peptide (AMP) genes were significantly up-regulated in the S. carpocapsae-challenged O. nipae. Taken together, our data suggest that S. carpocapsae modulates and surpasses the O. nipae immune responses and hence can serve as an excellent biological control agent of the pest.


Assuntos
Besouros/imunologia , Besouros/parasitologia , Nematoides/fisiologia , Animais , China , Besouros/genética , Hemolinfa/imunologia , Hemolinfa/parasitologia , Interações Hospedeiro-Parasita , Imunidade Celular , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia
14.
Parasit Vectors ; 11(1): 528, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30261926

RESUMO

BACKGROUND: Lymphatic filariasis is a mosquito-borne disease caused by filarioid nematodes. A comparative understanding of parasite biology and host-parasite interactions can provide information necessary for developing intervention programmes for vector control. Here, to understand such interactions, we choose highly susceptible filariasis vectors (Aedes togoi and Anopheles lesteri) as well as Anopheles paraliae, which has lower susceptibility, infected them with nocturnally subperiodic (NSP) Brugia malayi microfilariae (mf) and studied the exsheathment, migration and innate immune responses among them. METHODS: Mosquito-parasite relationships were systematically investigated from the time mf entered the midgut until they reached their development site in the thoracic musculature (12 time points). RESULTS: Results showed that exsheathment of B. malayi mf occurred in the midgut of all mosquito species and was completed within 24 h post-blood meal. The migration of B. malayi mf from the midgut to thoracic muscles of the highly susceptible mosquitoes Ae. togoi and An. lesteri was more rapid than in the low susceptibility mosquito, An. paraliae. Melanisation and degeneration, two distinct refractory phenotypes, of mf were found in the midgut, haemocoel and thoracic musculature of all mosquito species. Melanisation is a complex biochemical cascade that results in deposition of melanin pigment on a capsule around the worms. Also, some biological environments in the body are inhospitable to parasite development and cause direct toxicity that results in vacuolated or degenerated worms. Even though Ae. togoi is highly susceptible to B. malayi, melanisation responses against B. malayi mf were first noted in the haemocoel of Ae. togoi, followed by a degeneration process. In contrast, in An. lesteri and An. paraliae, the degeneration process occurred in the haemocoel and thoracic musculature prior to melanisation responses. CONCLUSION: This study provides a thorough description of the comparative pathobiology of responses of mosquitoes against the filarial worm B. malayi.


Assuntos
Brugia Malayi/crescimento & desenvolvimento , Culicidae/parasitologia , Mosquitos Vetores/parasitologia , Aedes/parasitologia , Animais , Anopheles/parasitologia , Brugia Malayi/fisiologia , Culicidae/imunologia , Sistema Digestório/parasitologia , Hemolinfa/parasitologia , Interações Hospedeiro-Parasita , Microfilárias/crescimento & desenvolvimento , Microfilárias/fisiologia , Músculos Respiratórios/parasitologia
15.
Parasit Vectors ; 10(1): 369, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764765

RESUMO

BACKGROUND: There is emerging evidence that mosquito anti-Plasmodium immunity is multimodal with distinct mechanisms for killing malaria parasites at either the ookinete or oocyst stages. Early-phase responses targeting the ookinete require complement-like components circulating in the mosquito hemolymph that result in TEP1-mediated lysis or melanization. Additional responses mediated by the LL3 and STAT pathways limit oocyst survival through unknown mechanisms that require mosquito hemocyte function. While previous experiments argue that these mechanisms of parasite killing are independent, the transient nature of gene-silencing has rendered these experiments inconclusive. To address this issue, we outline experiments using a TALEN-derived TEP1 mutant line to examine the role of TEP1 in the Anopheles gambiae late-phase immune response. RESULTS: Despite higher early oocyst numbers in the TEP1 mutant line, no differences in oocyst survival were observed when compared to control mosquitoes, suggesting that TEP1 function is independent of the late-phase immune response. To further validate this phenotype in the TEP1 mutant, oocyst survival was evaluated in the TEP1 mutant background by silencing either LL3 or STAT-A. Surprisingly, only STAT-A silenced mosquitoes were able to reconstitute the late-phase immune phenotype increasing oocyst survival in the TEP1 mutant line. Additional experiments highlight significant differences in LL3 expression in the M/S hybrid genetic background of the TEP1 mutant line compared to that of the Keele strain (M form) of An. gambiae, and demonstrate that LL3 is not required for granulocyte differentiation in the M/S hybrid G3 genetic background in response to malaria parasite infection. CONCLUSIONS: Through the combination of genetic experiments utilizing genetic mutants and reverse genetic approaches, new information has emerged regarding the mechanisms of mosquito late-phase immunity. When combined with previously published experiments, the body of evidence argues that Plasmodium oocyst survival is TEP1 independent, thus establishing that the mechanisms of early- and late-phase immunity are distinct. Moreover, we identify that the known components that mediate oocyst survival are susceptible to strain-specific differences depending on their genetic background and provide further evidence that the signals that promote hemocyte differentiation are required to limit oocyst survival. Together, this study provides new insights into the mechanisms of oocyst killing and the importance of genetics in shaping mosquito vector competence.


Assuntos
Anopheles/imunologia , Anopheles/parasitologia , Proteínas de Insetos/metabolismo , Mosquitos Vetores/imunologia , Oocistos/fisiologia , Animais , Anopheles/genética , Antígenos de Protozoários/imunologia , Proteínas do Sistema Complemento , Inativação Gênica , Hemócitos/fisiologia , Hemolinfa/imunologia , Hemolinfa/parasitologia , Imunidade Inata , Proteínas de Insetos/genética , Malária/parasitologia , Malária/transmissão , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Mutação , Oocistos/imunologia , Proteínas de Protozoários/imunologia , Interferência de RNA , Genética Reversa , Fatores de Transcrição STAT/metabolismo
16.
Parasit Vectors ; 10(1): 186, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420446

RESUMO

BACKGROUND: The Anopheles gambiae complex consists of species that vary greatly in their capacity to transmit malaria. The mosquito immune system has been identified as a key factor that can influence whether Plasmodium infection establishes within the mosquito vector. This study was designed to investigate the immune responses of An. coluzzii, An. arabiensis and An. quadriannulatus mosquitoes. The first two mosquito species are major vectors of malaria in sub-Saharan Africa, while the third is thought to be a non-vector. METHODS: All three mosquito species were reared in mixed cultures. Their capacity to eliminate P. berghei and regulate midgut bacteria was examined. RESULTS: Our results revealed large differences in mosquito resistance to P. berghei. In all three mosquito species, immune reactions involving the complement system were triggered when the number of parasites that mosquitoes were challenged with exceeded a certain level, i.e. immune tolerance threshold. This threshold was markedly lower in An. quadriannulatus compared to An. coluzzii and An. arabiensis. We also demonstrated that the level of immune tolerance to P. berghei infection in the haemolymph is inversely correlated with the level of immune tolerance to microbiota observed in the midgut lumen after a blood meal. The malaria non-vector mosquito species, An. quadriannulatus was shown to have a much higher level of tolerance to microbiota in the midgut than An. coluzzii. CONCLUSIONS: We propose a model whereby an increased tolerance to microbiota in the mosquito midgut results in lower tolerance to Plasmodium infection. In this model, malaria non-vector mosquito species are expected to have increased immune resistance in the haemocoel, possibly due to complement priming by microbiota elicitors. We propose that this strategy is employed by the malaria non-vector mosquito, An. quadriannulatus, while An. coluzzii has reduced tolerance to bacterial infection in the midgut and consequently reduced immune resistance to Plasmodium infection at the haemocoel level. An in-depth understanding of the molecular mechanisms regulating immune tolerance versus resistance in different mosquito vectors of malaria could guide the design of new vector and disease control strategies.


Assuntos
Anopheles/imunologia , Tolerância Imunológica , Mosquitos Vetores/imunologia , Plasmodium berghei/imunologia , Animais , Anopheles/microbiologia , Anopheles/parasitologia , Proteínas do Sistema Complemento/imunologia , Sistema Digestório/imunologia , Sistema Digestório/microbiologia , Sistema Digestório/parasitologia , Hemolinfa/imunologia , Hemolinfa/parasitologia , Interações Hospedeiro-Parasita , Malária/parasitologia , Malária/transmissão , Microbiota , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/microbiologia , Mosquitos Vetores/parasitologia
17.
J Microbiol Methods ; 131: 45-50, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27713019

RESUMO

Galleria mellonella is an excellent invertebrate model for the study of diseases that involve interactions with cells from the innate immune system, since they have an innate immune system capable of recognizing the pathogens. Here we present for the first time, an alternative model for an in vitro phagocytic assay using hemocytes of G. mellonella larvae to study infection by Leishmania (Viannia) braziliensis. We showed that the insect phagocytic cells were able to engulf promastigotes. Furthermore, this infective form differentiated into the amastigote form inside those cells. However, the cells in this model seem resistant to the parasite, since amastigotes were depleted after 24h and NO levels were maintained after infection. Our model opens an avenue of possibilities for new investigations regarding other Leishmania species, mechanisms of invasion and evasion, receptors involved, release of signaling molecules and, above all, it is a novel infection model using invertebrate animals.


Assuntos
Modelos Animais de Doenças , Hemócitos/parasitologia , Larva/parasitologia , Leishmania braziliensis/patogenicidade , Leishmaniose Mucocutânea/parasitologia , Lepidópteros/parasitologia , Fagócitos/parasitologia , Animais , Hemócitos/citologia , Hemócitos/imunologia , Hemolinfa/parasitologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular , Larva/imunologia , Leishmania braziliensis/imunologia , Leishmania braziliensis/fisiologia , Leishmaniose Mucocutânea/imunologia , Lepidópteros/citologia , Lepidópteros/imunologia , Microscopia Eletrônica de Varredura , Óxido Nítrico/metabolismo , Fagócitos/citologia , Fagócitos/imunologia
18.
PLoS Negl Trop Dis ; 10(11): e0005104, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27893749

RESUMO

Bithynia siamensis goniomphalos is a freshwater snail that serves as the first intermediate host of the human liver fluke Opisthorchis viverrini. This parasite is a major public health problem in different countries throughout the Greater Mekong sub-region (Thailand, southern Vietnam, Lao PDR and Cambodia). Chronic O. viverrini infection also results in a gradual increase of fibrotic tissues in the biliary tract that are associated with hepatobiliary diseases and contribute to cholangiocarcinoma (a fatal type of bile duct cancer). Infectivity of the parasite in the snail host is strongly correlated with destruction of helminths by the snail's innate immune system, composed of cellular (hemocyte) and humoral (plasma) defense factors. To better understand this important host-parasite interface we applied sequential window acquisition of all theoretical spectra mass spectrometry (SWATH-MS) to identify and quantify the proteins from the hemolymph of B. siamensis goniomphalos experimentally infected with O. viverrini and compare them to non-infected snails (control group). A total of 362 and 242 proteins were identified in the hemocytes and plasma, respectively. Of these, 145 and 117 proteins exhibited significant differences in expression upon fluke infection in hemocytes and plasma, respectively. Among the proteins with significantly different expression patterns, we found proteins related to immune response (up-regulated in both hemocyte and plasma of infected snails) and proteins belonging to the structural and motor group (mostly down-regulated in hemocytes but up-regulated in plasma of infected snails). The proteins identified and quantified in this work will provide important information for the understanding of the factors involved in snail defense against O. viverrini and might facilitate the development of new strategies to control O. viverrini infection in endemic areas.


Assuntos
Opisthorchis/fisiologia , Proteínas/genética , Caramujos/genética , Caramujos/parasitologia , Animais , Hemolinfa/metabolismo , Hemolinfa/parasitologia , Interações Hospedeiro-Parasita , Humanos , Opistorquíase/parasitologia , Opistorquíase/transmissão , Opisthorchis/genética , Proteínas/metabolismo , Proteômica , Caramujos/metabolismo
19.
J Invertebr Pathol ; 133: 110-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26549224

RESUMO

Relationships between parasites and hosts can be drastic, depending on the balance between parasite strategies and the efficiency of the host immune response. In the case of entomopathogenic nematodes and their insect hosts, we must also consider the role of bacterial symbionts, as the interaction among them is tripartite and each component plays a critical role in death or survival. We analyzed the effects induced by the nematode-bacteria complex Steinernema carpocapsae, against red palm weevil (RPW) larvae, Rhynchophorus ferrugineus. We examined the antimicrobial response of the insect when in the presence of nematocomplexes or of its symbionts, Xenorhabdus nematophila. In detail, we investigated the potential interference of live and dead S. carpocapsae, their isolated cuticles, live or dead bacterial symbionts and their lipopolysaccharides, on the synthesis and activity of host antimicrobial peptides. Our data indicate that both live nematodes and live bacterial symbionts are able to depress the host antimicrobial response. When nematodes or symbionts were killed, they lacked inhibitory properties, as detected by the presence of antimicrobial peptides (AMPs) in the host hemolymph and by assays of antimicrobial activity. Moreover, we isolated S. carpocapsae cuticles; when cuticles were injected into hosts they revealed evasive properties because they were not immunogenic and were not recognized by the host immune system. We observed that weevil AMPs did not damage X. nematophila, and the lipopolysaccharides purified from symbionts seemed to be non-immunogenic. We believe that our data provide more information on the biology of entomopathogenic nematodes, in particular concerning their role and the activity mediated by symbionts in the relationship with insect hosts.


Assuntos
Interações Hospedeiro-Parasita , Nematoides/microbiologia , Simbiose , Gorgulhos/parasitologia , Xenorhabdus/fisiologia , Animais , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Hemolinfa/microbiologia , Hemolinfa/parasitologia , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , Larva/parasitologia , Lipopolissacarídeos/farmacologia , Testes de Sensibilidade Microbiana , Nematoides/fisiologia , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Gorgulhos/imunologia , Gorgulhos/metabolismo , Gorgulhos/microbiologia , Xenorhabdus/efeitos dos fármacos
20.
Malar J ; 14: 383, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424326

RESUMO

BACKGROUND: The immune system of many insects wanes dramatically with age, leading to the general prediction that older insects should be more susceptible to infection than their younger counterparts. This prediction is however challenged by numerous studies showing that older insects are more resistant to a range of pathogens. The effect of age on susceptibility to infections is particularly relevant for mosquitoes given their role as vectors of malaria and other diseases. Despite this, the effect of mosquito age on Plasmodium susceptibility has been rarely explored, either experimentally or theoretically. METHODS: Experiments were carried out using the avian malaria parasite Plasmodium relictum and its natural vector in the field, the mosquito Culex pipiens. Both innate immune responses (number and type of circulating haemocytes) and Plasmodium susceptibility (prevalence and burden) were quantified in seven- and 17-day old females. Whether immunity or Plasmodium susceptibility are modulated by the previous blood feeding history of the mosquito was also investigated. To ensure repeatability, two different experimental blocks were carried out several weeks apart. RESULTS: Haemocyte numbers decrease drastically as the mosquitoes age. Despite this, older mosquitoes are significantly more resistant to a Plasmodium infection than their younger counterparts. Crucially, however, the age effect is entirely reversed when old mosquitoes have taken one previous non-infected blood meal. CONCLUSIONS: The results agree with previous studies showing that older insects are often more resistant to infections than younger ones. These results suggest that structural and functional alterations in mosquito physiology with age may be more important than immunity in determining the probability of a Plasmodium infection in old mosquitoes. Possible explanations for why the effect is reversed in blood-fed mosquitoes are discussed. The reversal of the age effect in blood fed mosquitoes implies that age is unlikely to have a significant impact on mosquito susceptibility in the field.


Assuntos
Envelhecimento/imunologia , Culex/fisiologia , Culex/parasitologia , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Malária Aviária/parasitologia , Malária Aviária/transmissão , Animais , Canários/parasitologia , Culex/imunologia , Comportamento Alimentar , Hemolinfa/imunologia , Hemolinfa/parasitologia , Insetos Vetores/imunologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...